KernJC: Automated Vulnerable Environment Generation

for Linux Kernel Vulnerabilities

Bonan Ruan, Jiahao Liu, Chuqi Zhang, Zhenkai Liang

RAID, September 2024
Padua, Italy

BB &

NUS
95

National University
of Singapore

Impact of Linux Kernel Vulnerabilities

* Privilege escalation on servers
* Android rooting
* Container escaping

11101

021000 @ AR el 000027

T i " N —
& \ - N
(O L 5T T o b\ \ NN
o do]& ,_‘xé,‘c? A c\ —
oo RTINS & \ NN NN
o ¢ I \

Source: generated by ChatGPT

Active Exploitation Observed for Linux
Kernel Privilege Escalation Vulnerability
(CVE-2024-1086)

Home > News » Security > Google fixes Android kernel zero-day exploited in targeted attacks

Google fixes Android kernel zero-day exploited in targeted attacks

By Sergiu Gatlan August 5, 2024 06:40 PM 1

Linux Kernel Bug Allows Kubernetes Container Escape

{4 January 31,2022 % Container Linux, container security, container vulnerability, kubernetes, Linux kernel

e by Nathan Eddy

Kernel Vulnerability Reproduction

* Reproduction is pivotal to the comprehension of vulnerabilities.

* Application Scenarios:
* Vulnerability severity assessment
* Design of detection and mitigation
* Evaluation of detection and mitigation

* Two crucial elements for reproduction:

* The vulnerable environment
* The Proof of Concept (PoC)

* Existing studies focus on PoC generation, while the generation of
reproduction environment is overlooked, but non-trivial.

Challenges

* Incorrect vulnerable versions:
* |tis hard to guarantee that the selected kernel version is vulnerable, as the
vulnerability version claims in online databases are occasionally incorrect.

* Intricate kernel configs:
* For many kernel vulnerabilities, intricate non-default kernel configs must be

set to include and trigger these vulnerabilities, while less information is
available on how to recognize these configs.

ma Jcommemed on Apr 13, 2022
Hello, when building the test environment, | followed the steps above to
compile the kernel...it kept getting stuck...During the test, | didn‘t find any

'NFQUEUE’ rule in the target...

@ mmmam COMMented on Apr 13, 2022 Owner | Author = =*-

Hello, when building the test environment, | followed the steps above to compile the
kernel...it kept getting stuck...During the test, | didn‘t find any 'NFQUEUE’ rule in the target...

At the time, | selected many configs, and it's possible that some configs
were not included. First, check if it's an issue with the compilation options... 3

Example: CVE-2021-22555 (OOB in Netfilter)

{- Vulnerable }
* Vulnerable version ranges claimed by NVD: w= Non-vulnerable

———_-_
Vo begin Vo end vV, begin v, end

e Actually, some versions have already been patched:

V end

_—_____
Vo begin Vo end v, begin

» Kernel configs needed for triggering this vulnerability:

CONFIG_COMPAT CONFIG_NETFILTER_XTABLES CONFIG_NETFILTER

CONFIG_NET CONFIG_NETFILTER_FAMILY_ARP CONFIG_NETFILTER_ADVANCED
CONFIG_INET CONFIG_IP_NF_IPTABLES CONFIG_NLATTR

CONFIG_IPV6 CONFIG_IP_NF_ARPTABLES CONFIG_GENERIC_NET_UTILS
CONFIG_BPF CONFIG_IP6_NF_IPTABLES CONFIG_NETFILTER_XT_TARGET_NFQUEUE

Given a kernel vulnerability, how can we identify the real vulnerable version and necessary configs?

* The presence of patch implies the absence of vulnerability.
» Kconfig and Kbuild mechanisms work in tandem to tailor the kernel.
» Kernel configs can be regarded as graph.

4)

Insights

* Given a kernel version, check the presence of patch.

* Parse the Kconfig and Makefile files into a graph.

* Abstract the config identification problem into a graph
searching problem.

Overview of KernJC

[|=> Generate] (Kernel Source Code (Online)]
¥

‘ Used by

¥ Y

(Vulnerabilitw Version w Config W Enwronment
— N N Profiling Identificatio Identification Provisioning
E> v Kconflg Graph ‘
CVE Info Q Kernel
= X + E;> =]
D| o X
Aggregation Env
Release info & Updating A{é} Configs R
; ootfs
\ h Versions P L)

Vulnerability Profiling: Collect vulnerability information for later usage.
Version Identification: Perform patch operation to detect patch presence.
Config Identification: Build Kconfig graph and mine reachable configs.
Environment Provisioning: Build the kernel and provision the virtual machine.

Vulnerability Profiling

Config Identification

* CVE descriptions otces s
* Vulnerable version ranges [veworno | [nhcmmm}m&s S rjé] =| jgﬁ
e Patch commit(s) and contents r{ }

* Files affected by patches (v o) —

* Linux kernel version release list i w } [) e |

Incremental Aggregation & Updating
Version Identification

Vulnerability Version Identification

* Locate the latest vulnerable version v claimed by NVD.

e Start from v and move downwards along the kernel version list:
* Apply the patch on vulnerability related files of each version.
* Stop when no patch presence detected.

7

L

[

(@] Vul Version
(O Patched Version

Vulnerability Related Files

Claimed Version Range

.‘—
4th check v

——

3dcheck X [
g

2nd check X Patch

‘—
15t check X

Version

7

Identification Process

Vulnerable 4f (len > PAGE_SIZE - 2 - size)

{ - §f (len > PAGE_SIZE - 2 - size)
{ + if (size + len + 2 > PAGE_SIZE) |

Patched +f (size + len + 2 > PAGE_SIZE)
| - if (len > PAGE_SIZE - 2 - size) |
i+ if (size + len + 2 > PAGE_SIZE)

Line deletion not found. Patch presence detected!

Identification Example

Vulnerability Config Identification

* Build the Kconfig graph for target kernel. g " Lotedirectconfesngraph)

* Gather direct configs (D = DDC U DPC U DCC): <FTFJ- [>[<?2']
+
®
e

* DDC: Direct Description-level Configs U

 DPC: Direct Path-level Configs
e DCC: Direct Code-level Configs — [.\./ ./>]
* For each configcin D: _ Code Path Desc)

* Locate c in the Kconfig graph.

* Discover hidden configs for ¢ (H. = HRC U HSC U HDC):
* HRC: Hidden Reachable Configs from c
* HSC: Hidden Configs with Select relation to ¢
* HDC: Hidden Configs with Depend relation ¢

Identify hidden configs in graph)

@ Direct Config
@ Hidden Config

[] Config]

* Collect all hidden configs.
* Final result=D U H.

Evaluation

* Research Questions:
 RQ1: How is KernlC’s performance in reproduction of kernel vulnerabilities?

* RQ2: How well do the configs identified by KernJC facilitate the reproduction
of kernel vulnerabilities?

* RQ3: How many incorrect version claims in NVD can KernJC detect for Linux
kernel vulnerabilities?

* Dataset:
e RQ1 & RQ2: 66 real-world kernel CVEs with workable PoCs

* CVEs are collected from relevant research published on top security conferences in the
past five years.

* PoCs are collected from the Internet and modified to make them workable.

* RQ3: 2,256 kernel CVEs with associated patches

10

Performance in Reproduction

» KernJC successfully builds effective reproduction environments for all
66 vulnerabilities.

» 4 of 66 are detected to have incorrect (FP) version claims in NVD.
» 32 of 66 need non-default configs identified by KernJC to be activated.

EENTE T

2016-10150 X X 2018-12233 X X 2020-27194 X 2021-3490 ¢ X
2016-4557 o X X 2018-5333 « X X 2020-27830 « X X 2021-3573 & X 4
20166187 X X 20186555 & X X 2020-28941 X X 2021-42008 X X
2017-16995 X X 2019-6974 & X X 2020-8835 ¢ X X 2021-43267 & X X
2017-18344 & X X 2020-14381 & "4 LV 4 2021-22555 X L4 2022-0995 & X X
2017-2636 & X X 2020-16119 « X X 2021-26708 X X 2022-1015 & X X
2017-6704 X X 2020-25656 "4 « 2021-27365 X X 2022-25636 « X X
2017-8824 X X 2020-25669 & X X 2021-34866 X X 2022-32250 X X
2022-34918 X X 2023-32233 X X
RwKC: Reproducibility with KernJC-identified Configs FPV: False Positive Version claims in NVD
RwDC: Reproducibility with Default Configs 11

Configs Identified by KernJC

e Half of the 32 vulnerabilities necessitate HSC or HDC for activation.

e Consequently, HSC and HDC identified by KernJC play an important role in
constructing effective reproduction environments for kernel vulnerabilities.

_

CVE-2016-10150 0 CVE-2021-34866 O

CVE-2016-4557 0 1 0 0 2 0 CVE-2021-3490 0 1 0 0 2 2
CVE-2016-6187 0 1 0 14 0 2 CVE-2021-3573 0 1 0 32 0 45
CVE-2017-16995 0 1 0 0 2 0 CVE-2022-1015 0 1 0 4 0 241
CVE-2019-6974 0 1 0 42 0 4 CVE-2022-25636 O 4 0 19 2 241
CVE-2020-27194 0 1 0 0 2 1 CVE-2022-32250 O 1 0 4 0 238
CVE-2020-8835 0 1 0 0 2 1 CVE-2022-34918 O 1 0 4 0 238
CVE-2021-22555 0 7 1 10 3 406 CVE-2023-32233 O 2 0 5 0 317

Vulnerabilities relying on HSC or HDC

12

Incorrect Version Claims in NVD

* We identify 128 vulnerabilities with incorrect version claims in NVD.

* The aggregate count of incorrect (FP) versions is 3,042.
e averaging 24 incorrect versions per identified vulnerability.

_ FP Version Range Vulnerable Version | FP Count

CVE-2017-1000407 v4.14.6 —v4.14.325 v4.14.5

CVE-2017-18216 v4.14.57 -v4.14.325 v4.14.56 269
CVE-2017-18224 v4.14.57 -v4.14.325 v4.14.56 269
CVE-2020-35508 v5.9.7 -v5.11.22 v5.9.6 229
CVE-2021-4002 v5.15.5-v5.15.132 v5.15.4 128
CVE-2021-4090 v5.15.5-v5.15.132 v5.15.4 128
CVE-2022-0264 v5.15.11-v5.15.132 v5.15.10 122
CVE-2021-4155 v5.15.14-v5.15.132 v5.15.13 119
CVE-2016-10906 v4.4.191 - v4.4.302 v4.4.190 112
CVE-2015-4170 v3.12.7-v3.13.3 v3.12.6 72

Top 10 vulnerabilities sorted by FP version count 13

Conclusion

* We point out two challenges in the generation of vulnerable
environments for Linux kernel vulnerabilities.

* We propose patch-based and graph-based approaches to solve these
challenges.

* KernJC: automated vulnerable environment generation for Linux
kernel vulnerabilities
 https://github.com/NUS-CURIOSITY/KernJC

Thank you!
Contact me at r-bonan@comp.nus.edu.sg

14

https://github.com/NUS-CURIOSITY/KernJC

@ iTerm2 GShell Edit View Session Secripts Profiles Toolbelt Window Help 0 ¢« OO ¢n @ T m 2 1647

(venv) » KernlC git:(main) x ./kjc build CVE-2021-22555
[*] Building environment for CVE-2021-22555

	Slide 0
	Slide 1: Impact of Linux Kernel Vulnerabilities
	Slide 2: Kernel Vulnerability Reproduction
	Slide 3: Challenges
	Slide 4: Example: CVE-2021-22555 (OOB in Netfilter)
	Slide 5: Observations
	Slide 6: Overview of KernJC
	Slide 7: Vulnerability Profiling
	Slide 8: Vulnerability Version Identification
	Slide 9: Vulnerability Config Identification
	Slide 10: Evaluation
	Slide 11: Performance in Reproduction
	Slide 12: Configs Identified by KernJC
	Slide 13: Incorrect Version Claims in NVD
	Slide 14: Conclusion
	Slide 15: Demo with CVE-2021-22555

